Hochschild and Cyclic Homology of Centrally Hopf-galois Extensions

نویسنده

  • A. MAKHLOUF
چکیده

Let B ⊆ A be an H-Galois extension. If M is a Hopf bimodule then HH∗(A, M), the Hochschild homology of A with coefficients in M , is a right comodule over the coalgebra CH = H/[H,H]. Given an injective left CHcomodule V , our aim is to investigate the relationship between HH∗(A, M) CHV and HH∗(B, M CHV ). The roots of this problem can be found in [Lo2], where HH∗(A,A) G and HH∗(B,B) are shown to be isomorphic, for any centrally G-Galois extension. To approach the above mentioned problem we construct a spectral sequence TorH p (HHq(B, M CHV )) =⇒ HHp+q(A, M) CHV, where RH denotes a certain subalgebra of H. In the case when H is a finitedimensional commutative Hopf algebra over a field of characteristic zero we show that the above spectral sequence collapses. Thus its edge maps induce isomorphisms K ⊗RH HH∗(B, M CHV ) ∼= HH∗(A, M) CHV, that generalize the isomorphisms in [Lo2]. In the last part of the paper, for a centrally Hopf-Galois extension B ⊆ A, we apply the foregoing results to compute the subspace of H-coinvariant elements in HH∗(A, M), where H ′ is the abelianization of H. A similar result is derived for cyclic homology of A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Geometry through Monoidal Categories

After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasi-coherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, Hopf-Galois extensions) can be given geometric meaning extending their geometric interpretations in the commutative case. On the other hand, we show that some constructions...

متن کامل

ar X iv : 0 70 7 . 15 42 v 1 [ m at h . A G ] 1 1 Ju l 2 00 7 NONCOMMUTATIVE GEOMETRY THROUGH MONOIDAL CATEGORIES

After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasi-coherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, Hopf-Galois extensions) can be given geometric meaning extending their geometric interpretations in the commutative case. On the other hand, we show that some constructions...

متن کامل

(co)cyclic (co)homology of Bialgebroids: an Approach via (co)monads

For a (co)monad Tl on a category M, an object X in M, and a functor Π : M → C, there is a (co)simplex Z := ΠTl ∗+1 X in C. The aim of this paper is to find criteria for para(co)cyclicity of Z. Our construction is built on a distributive law of Tl with a second (co)monad Tr on M, a natural transformation i : ΠTl → ΠTr , and a morphism w : TrX → TlX in M. The (symmetrical) relations i and w need ...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

Hopf–hochschild (co)homology of Module Algebras

Our goal in this paper is to define a version of Hochschild homology and cohomology suitable for a class of algebras admitting compatible actions of bialgebras, called “module algebras” (Definition 2.1). Our motivation lies in the following problem: for an algebra A which admits a module structure over an arbitrary bialgebra B compatible with its product structure, the Hochschild or the cyclic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008